2,3-Dihydro-5,6-dimethyl-1,4-dithiin 1,1,4,4-Tetroxide

By Satish K. Arora, Robert B. Bates and George Kriek
Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
and Arthur D. Brewer
Research Laboratories, Uniroyal Ltd, 120 Huron Street, Guelph, Ontario N1H6N3, Canada

(Received 20 March 1978; accepted 10 May 1978)

Abstract

C}_{6} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}_{2}, M_{r}=210 \cdot 28\), monoclinic, $P 2_{1} / c$ (systematic absences $h 0 l, l$ odd; $0 k 0, k$ odd), $a=$ 11.285 (6), $b=5.746$ (2), $c=14.22$ (2) $\AA, \beta=$ $103.69(8)^{\circ}, Z=4, D_{c}=1.56, D_{m}=1.54 \mathrm{~g} \mathrm{~cm}^{-3}$ (flotation in aqueous KI). The structure was refined to a final R of 0.042 for 1340 reflections. The vinyl-tosulfone $\mathrm{C}-\mathrm{S}$ bonds were unexpectedly long [1.778 (3) and 1.779 (4) \AA], presumably for steric reasons.

Introduction. Certain 2,3-dihydro-1,4-dithiin 1,1,4,4tetroxides (I) have powerful herbicidal (Brewer, Neidermyer \& McIntyre, 1975, 1976, 1977) and microbiocidal (Brewer \& Davis, 1977) properties, and it seemed desirable to obtain molecular parameters for a member of this class. We now report the results of an X-ray study of a crystal of 2,3-dihydro-5,6-dimethyl-1,4-dithiin 1,1,4,4-tetroxide (Harvade ${ }^{\circledR}, \mathrm{I} a$), a very effective plant-growth regulator, which in very small doses causes defoliation or desiccation of crops like cotton (Neidermyer, Brewer \& Judge, 1974; McIntyre, Lambert \& Brewer, 1977) and potatoes (Murphy, 1975).

(la): $R=R^{\prime}=M e$

A crystal $0.5 \times 0.5 \times 0.1 \mathrm{~mm}$ grown from ethanol was used. A Syntex $P 2_{1}$ diffractometer with a graphite monochromator (Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$) and pulse-height analyzer was used for preliminary pictures and intensities. Systematic absences defined the space group $P 2_{1} / c$, with cell constants (see Abstract) determined by least-squares treatment of 12 reflections. Intensities were collected using $2^{\circ} \theta-2 \theta$ scans with a variable scan rate of 2.0 to $29.3^{\circ} \mathrm{min}^{-1}$ in 2θ and a background to scan time ratio of $1 \cdot 0.1826$ independent reflections with $2 \theta<50^{\circ}$ were measured,
of which 1340 with $I>3 \sigma(I)$ were considered observed. There were no significant variations in the intensities of three check reflections monitored every 100 reflections. Lorentz and polarization corrections were applied, but no correction was made for absorption.

The crystal structure was solved by direct methods with MULTAN (Germain, Main \& Woolfson, 1971). The E map revealed all the nonhydrogen atoms. Fullmatrix least-squares refinement in which positional and isotropic thermal parameters were varied reduced R to 0.089 . Anisotropic refinement brought R to 0.059 . All the H atoms were located on difference maps, and their inclusion with isotropic temperature factors in further refinement cycles reduced R to $0 \cdot 042$. Refinement was terminated at this stage since the ratios of shifts in parameters to estimated standard deviations were

Table 1. Final positional parameters $\left(\times 10^{4}\right.$; for H $\times 10^{3}$) of ($\left.\mathrm{I} a\right)$ with estimated standard deviations in parentheses

	x	y	z
$\mathrm{~S}(1)$	$7348(1)$	$-178(1)$	$5168(1)$
$\mathrm{S}(4)$	$6603(1)$	$2225(1)$	$2951(1)$
$\mathrm{O}(1) \mathrm{S}(1)$	$8279(2)$	$478(5)$	$5994(2)$
$\mathrm{O}(2) \mathrm{S}(1)$	$6608(2)$	$-2164(4)$	$5252(2)$
$\mathrm{O}(1) \mathrm{S}(4)$	$7110(2)$	$4530(4)$	$3052(2)$
$\mathrm{O}(2) \mathrm{S}(4)$	$5943(2)$	$1515(4)$	$2009(2)$
$\mathrm{C}(2)$	$8082(2)$	$-773(5)$	$4216(2)$
$\mathrm{C}(3)$	$7812(2)$	$206(5)$	$3351(2)$
$\mathrm{C}(5)$	$5655(3)$	$1871(5)$	$3764(2)$
$\mathrm{C}(6)$	$6378(3)$	$2228(5)$	$4784(2)$
$\mathrm{C}(7)$	$9062(3)$	$-2566(6)$	$4539(3)$
$\mathrm{C}(8)$	$8491(3)$	$-291(7)$	$2570(3)$
$\mathrm{H}(1) \mathrm{C}(5)$	$505(2)$	$295(6)$	$354(2)$
$\mathrm{H}(2) \mathrm{C}(5)$	$535(2)$	$47(5)$	$365(2)$
$\mathrm{H}(1) \mathrm{C}(6)$	$591(3)$	$232(5)$	$524(2)$
$\mathrm{H}(2) \mathrm{C}(6)$	$690(3)$	$347(5)$	$486(2)$
$\mathrm{H}(1) \mathrm{C}(7)$	$972(4)$	$-233(7)$	$437(3)$
$\mathrm{H}(2) \mathrm{C}(7)$	$921(5)$	$-285(9)$	$516(4)$
$\mathrm{H}(3) \mathrm{C}(7)$	$892(4)$	$-368(10)$	$421(4)$
$\mathrm{H}(1) \mathrm{C}(8)$	$947(4)$	$-24(8)$	$290(3)$
$\mathrm{H}(2) \mathrm{C}(8)$	$812(4)$	$-150(8)$	$223(3)$
$\mathrm{H}(3) \mathrm{C}(8)$	$840(3)$	$90(8)$	$217(3)$

Fig. 1. Stereoscopic view of a molecule of (Ia), with 50% probability thermal ellipsoids for non-hydrogen atoms and 10% ellipsoids for H atoms.

Fig. 2. Stereoscopic view of a unit cell (b-axis projection, a axis horizontal).

Table 2. Bond lengths (\AA) with estimated standard deviations in parentheses

$\mathrm{O}(1) \mathrm{S}(1)-\mathrm{S}(1)$	$1.429(3)$	$\mathrm{C}(5)-\mathrm{H}(1) \mathrm{C}(5)$	$0.92(3)$
$\mathrm{O}(2) \mathrm{S}(1)-\mathrm{S}(1)$	$1.436(2)$	$\mathrm{C}(5)-\mathrm{H}(2) \mathrm{C}(5)$	$0.88(3)$
$\mathrm{O}(1) \mathrm{S}(4)-\mathrm{S}(4)$	$1.436(2)$	$\mathrm{C}(6)-\mathrm{H}(1) \mathrm{C}(6)$	$0.94(4)$
$\mathrm{O}(2) \mathrm{S}(4)-\mathrm{S}(4)$	$1.429(3)$	$\mathrm{C}(6)-\mathrm{H}(2) \mathrm{C}(6)$	$0.92(3)$
$\mathrm{C}(2)-\mathrm{S}(1)$	$1.779(4)$	$\mathrm{C}(7)-\mathrm{H}(1) \mathrm{C}(7)$	$0.84(5)$
$\mathrm{C}(3)-\mathrm{S}(4)$	$1.778(3)$	$\mathrm{C}(7)-\mathrm{H}(2) \mathrm{C}(7)$	$0.87(6)$
$\mathrm{C}(6)-\mathrm{S}(1)$	$1.768(3)$	$\mathrm{C}(7)-\mathrm{H}(3) \mathrm{C}(7)$	$0.79(5)$
$\mathrm{C}(5)-\mathrm{S}(4)$	$1.763(4)$	$\mathrm{C}(8)-\mathrm{H}(1) \mathrm{C}(8)$	$1.09(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.320(4)$	$\mathrm{C}(8)-\mathrm{H}(2) \mathrm{C}(8)$	$0.89(4)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.502(4)$	$\mathrm{C}(8)-\mathrm{H}(3) \mathrm{C}(8)$	$0.88(4)$
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.518(5)$		
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.501(4)$		

$<0 \cdot 3$. The refinement was based on F_{o}, the quantity minimized being $\sum w\left(F_{o}-F_{c}\right)^{2}$. The weighting scheme used was based on counter statistics as defined by Corfield, Doedens \& Ibers (1967); the value of p was $0 \cdot 03$. The scattering factors used were those of Hanson, Herman, Lea \& Skillman (1964).*

Discussion. The final atomic coordinates are given in Table 1, with standard deviations taken from the leastsquares matrix. Table 2 gives bond lengths and Table 3

[^0]bond angles. Fig. 1 depicts a molecule with thermal ellipsoids and Fig. 2 shows the molecular packing. The six-membered ring approaches a cyclohexene half-chair conformation (but lacks the twofold axis through the double bond and the opposite ring bond characteristic of a perfect half-chair), as indicated by the torsion angles, starting from $S(1)-C(2)-C(3)-S(4)$ and proceeding around the ring toward higher numbers: $-3 \cdot 1$, $-17 \cdot 3,56 \cdot 1,-73 \cdot 3,46 \cdot 9,-8 \cdot 4^{\circ}$ (Bucourt, 1974). A -2.7° twist from coplanarity about the double bond is further revealed by the torsion angles $\mathrm{S}(1)-\mathrm{C}(2)-$ $\mathrm{C}(3)-\mathrm{C}(8)\left(177.8^{\circ}\right), \mathrm{S}(4)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)\left(176.8^{\circ}\right)$, and $\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)\left(-2 \cdot 3^{\circ}\right)$. The methyl groups are rotated as in duroquinone (Rabinovich, Schmidt \& Ubell, 1967).

The most surprising structural feature is the long $\mathrm{S}-\mathrm{C}_{s p^{2}}$ bonds: $\mathrm{S}(1)-\mathrm{C}(2)$ at 1.779 (4) \AA and $\mathrm{S}(4)-$ C(3) at 1.778 (3) \AA. Most other substances with vinylsulfone bonds have significantly shorter bonds: (II) [1.730 (3) \AA; Boelema, Visser \& Vos, 1967] and (III) [1.716 (3) and 1.723 (3) \AA; Ammon, Watts, Stewart \& Mock, 1968]. (IV), on the other hand, has bond lengths of 1.79 (2) \AA (Vorontsova, 1966), comparable to those of (Ia). In the absence of (Ia) and (III), it would be tempting to attribute the long bonds of (IV) to a weak anti-aromaticity and the short bonds of (II) to a corresponding weak aromaticity, but if this were the sole factor, (I a) and (III), with virtually no contribution from cyclic conjugation, would fall in between. An alternative factor, which accounts for long bonds in (Ia) and (IV), is steric hindrance; this is analogous to

Table 3. Bond angles $\left(^{\circ}\right)$ with estimated standard deviations in parentheses

$\mathrm{O}(1) \mathrm{S}(1)-\mathrm{S}(1)-\mathrm{O}(2) \mathbf{S}(1)$	118.1 (5)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	124.6 (4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(2) \mathrm{C}(6)$	114 (1)
$\mathrm{O}(1) \mathrm{S}(1)-\mathrm{S}(1)-\mathrm{C}(2)$	$107 \cdot 0$ (4)	$\mathrm{S}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	124.5 (4)	$\mathrm{H}(1) \mathrm{C}(6)-\mathrm{C}(6)-\mathrm{H}(2) \mathrm{C}(6)$	109 (1)
$\mathrm{O}(2) \mathrm{S}(1)-\mathrm{S}(1)-\mathrm{C}(2)$	$107 \cdot 1$ (4)	$\mathrm{S}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	111.7 (4)	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(1) \mathrm{C}(7)$	116 (2)
$\mathrm{O}(1) \mathrm{S}(1)-\mathrm{S}(1)-\mathrm{C}(6)$	$109 \cdot 2$ (5)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	123.8 (4)	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(2) \mathrm{C}(7)$	113 (2)
$\mathrm{O}(2) \mathrm{S}(1)-\mathrm{S}(1)-\mathrm{C}(6)$	108.5 (4)	$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$110 \cdot 1$ (4)	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(3) \mathrm{C}(7)$	110 (2)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(6)$	106.3 (4)	$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{H}(1) \mathrm{C}(5)$	102 (1)	$\mathrm{H}(1) \mathrm{C}(7)-\mathrm{C}(7)-\mathrm{H}(2) \mathrm{C}(7)$	110 (2)
$\mathrm{O}(1) \mathrm{S}(4)-\mathrm{S}(4)-\mathrm{O}(2) \mathrm{S}(4)$	117.7 (3)	$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{H}(2) \mathrm{C}(5)$	105 (1)	$\mathrm{H}(1) \mathrm{C}(7)-\mathrm{C}(7)-\mathrm{H}(3) \mathrm{C}(7)$	92 (2)
$\mathrm{O}(1) \mathrm{S}(4)-\mathrm{S}(4)-\mathrm{C}(3)$	108.2 (3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(1) \mathrm{C}(5)$	116 (1)	$\mathrm{H}(2) \mathrm{C}(7)-\mathrm{C}(7)-\mathrm{H}(3) \mathrm{C}(7)$	114 (2)
$\mathrm{O}(2) \mathrm{S}(4)-\mathrm{S}(4)-\mathrm{C}(3)$	107.7 (3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(2) \mathrm{C}(5)$	114 (1)	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(1) \mathrm{C}(8)$	109 (2)
$\mathrm{O}(1) \mathrm{S}(4)-\mathrm{S}(4)-\mathrm{C}(5)$	109.3 (3)	$\mathrm{H}(1) \mathrm{C}(5)-\mathrm{C}(5)-\mathrm{H}(2) \mathrm{C}(5)$	109 (1)	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(2) \mathrm{C}(8)$	106 (2)
$\mathrm{O}(2) \mathrm{S}(4)-\mathrm{S}(4)-\mathrm{C}(5)$	108.6 (3)	$\mathrm{S}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	110.3 (4)	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(3) \mathrm{C}(8)$	109 (2)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	104.7 (3)	$\mathrm{S}(1)-\mathrm{C}(6)-\mathrm{H}(1) \mathrm{C}(6)$	104 (1)	$\mathrm{H}(1) \mathrm{C}(8)-\mathrm{C}(8)-\mathrm{H}(2) \mathrm{C}(8)$	123 (2)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	125.5 (4)	$\mathrm{S}(1)-\mathrm{C}(6)-\mathrm{H}(2) \mathrm{C}(6)$	104 (1)	$\mathrm{H}(1) \mathrm{C}(8)-\mathrm{C}(8)-\mathrm{H}(3) \mathrm{C}(8)$	102 (2)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	109.9 (4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(1) \mathrm{C}(6)$	114 (1)	$\mathrm{H}(2) \mathrm{C}(8)-\mathrm{C}(8)-\mathrm{H}(3) \mathrm{C}(8)$	107 (2)

the somewhat smaller lengthening $(0.02 \AA)$ which has been observed for vinyl-carbonyl bonds in p-benzoquinones when a H atom is replaced by a methyl group (R abinovich, Schmidt \& Ubell, 1967).

The authors wish to thank the University of Arizona Computer Center for computer time.

References

Ammon, H. L., Watts, P. H., Stewart, J. M. \& Mock, W. L. (1968). J. Am. Chem. Soc. 90, 4501-4503.

Boelema, E., Visser, G. J. \& Vos, A. (1967). Recl Trav. Chim. Pays-Bas, 86, 1275-1280.
Brewer, A. D. \& Davis, R. A. (1977). US Patent 4004018 , January 18.
Brewer, A. D., Neidermyer, R. W. \& McIntyre, W. S. (1975). US Patent 3920 438, November 18.

Brewer, A. D., Neidermyer, R. W. \& McIntyre, W. S. (1976). US Patent 3997 323, December 14.

Brewer, A. D., Neidermyer, R. W. \& Mcintyre, W. S. (1977). US Patent 4026 906, May 31.

Bucourt, R. (1974). Top. Stereochem. 8, 183.
Corfield, P. W. R., Doedens, R. J. \& Irers, J. A. (1967). Inorg. Chem. 6, 197-204.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

McIntyre, S., Lambert, W. \& Brewer, A. D. (1977). Plant Growth Regulat. Bull. 5, 202.
Murphy, H. J. (1975). Proc. Northeast. Weed Sci. Soc. 29, 184-186.
Neidermyer, R. W., Brewer, A. D. \& Judge, F. D. (1974). Proc. 12 th Br. Weed Control Conf. pp. 959-965.

Rabinovich, D., Schmidt, G. M. J. \& Ubell, E. (1967). J. Chem. Soc. B, pp. 131-139.
Vorontsova, L. G. (1966). J. Struct. Chem. 7, 234-237.

Acta Cryst. (1978). B34, 2920-2922

5,6,7,8-Tetrafluoro-1,2,3,4-tetrahydro-9-isopropyl-1,4-methanonaphthalene

By D. S. Brown and K. G. Mason
Department of Chemistry, Loughborough University of Technology, Loughborough LE 11 3TU, England

(Received 12 May 1978; accepted 14 June 1978)

Abstract

C}_{14} \mathrm{H}_{14} \mathrm{~F}_{4}, M_{r}=258 \cdot 14\), monoclinic, $P 2_{1} / c$ (absent reflections: $h 0 l$ when l odd, $0 k 0$ when k odd), $a=8.56$ (1), $b=9.26$ (2), $c=15.72$ (2) $\AA, \beta=$ $96.6(5)^{\circ}, U=1244.53 \AA^{3}, Z=4, D_{x}=1.383 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=536$. The structure was solved by direct methods and refined to $R=0.060$ for the 806 observed reflections. The molecular configuration provides an

explanation of an unexpected feature in the proton NMR spectrum.

Introduction. During a detailed study of the chemistry of arynes the reaction between tetrafluorobenzyne (I) and 6,6 -dimethylfulvene (II) was studied (Hankinson, Heaney, Price \& Sharma, 1973) whence the expected

[^0]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33611 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

